
Reply to 'Comment on ''Equilibrium crystal shape of the Potts model at the first-order transition

point'''

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 7553

(http://iopscience.iop.org/0305-4470/35/34/402)

Download details:

IP Address: 171.66.16.107

The article was downloaded on 02/06/2010 at 10:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/34
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 7553–7557 PII: S0305-4470(02)36224-3

REPLY

Reply to ‘Comment on “Equilibrium crystal shape of
the Potts model at the first-order transition point”’

Masafumi Fujimoto

Department of Physics, Nara Medical University, Kashihara, Nara 634-8521, Japan

Received 19 June 2002
Published 15 August 2002
Online at stacks.iop.org/JPhysA/35/7553

Abstract
The eight-vertex model is defined on the square lattice rotated through an
arbitrary angle with respect to the coordinate axes. We re-examine the analysis
of the anisotropic correlation length in a previous paper (Fujimoto M 1996
Physica A 233 485–502). We point out that the asymptotic form of the
correlation function is expressed by the use of differential forms on a Riemann
surface of genus 1. Combined with the symmetry of the square lattice, this
fact explains that the anisotropic correlation length is represented in terms of
simple algebraic curves. The argument is applicable to a wide class of lattice
models (including unsolvable ones).

PACS numbers: 05.50.+q, 02.10.−v, 02.20.−a, 02.40.−k, 61.50.Ah

In a previous paper [1] we considered the Q-state Potts model on the square lattice. It was
shown that the anisotropic correlation length (ACL) is related by duality to the anisotropic
interfacial tension (AIT). For Q > 4 the ACL was calculated at the first-order transition (or
self-dual) point. From the calculated ACL the equilibrium crystal shape (ECS) was derived
via the duality relation and the Wulff construction. The ECS was represented as

α2β2 + 1 + A3(α
2 + β2) + A4αβ = 0 (1a)

with
α = exp[−�(X + Y )/kBT ] β = exp[−�(X − Y )/kBT ] (1b)

for definitions of A3 and A4, see section 3.2 of [1]. The algebraic curve is a quite general one
which appears as the ECS of a wide class of square-lattice models including the eight-vertex
model [2].

In his comment [3] Rutkevich showed that the one-particle dispersion relations in the six-
vertex model, the Ising model, and the Gaussian model are the same; note that the self-dual
Potts model is equivalent to the six-vertex model. He argued as follows: one can say that the
algebraic curve (1) reflects the universality in the one-particle dispersion relation; it is likely
that the origin of the universality lies in the symmetry of the square lattice. An extension of the
argument was suggested: the ACL of the Ising model on the cubic lattice could be identical
with that of the Gaussian model on the cubic lattice.
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Figure 1. (a) Method of active rotation. Keeping the square lattice fixed, we investigate along the
direction designated by θ with the help of the row-to-row transfer matrix and the shift operator.
(b) Method of passive rotation. The square lattice is rotated through θ . The rotated system is
investigated by the use of the transfer matrix V̄ acting on zigzag walls.

In the beginning of this reply we point out that (1) is not the only universal curve. For
example, we calculated the ACL of the square-lattice eight-vertex model in [4]. It was found
that for a given x (0 < x < 1) there are two cases with respect to a parameter q. In the case
0 < q < x3 the ACL is written by use of the algebraic curve (1); thus the argument in [3] is
applicable. For x3 < q < x4 the ACL is not related to (1), but to the algebraic curve

α2β2 + 1 + Ā2(αβ + 1)(α + β) + Ā3(α
2 + β2) + Ā4αβ = 0. (2)

The algebraic curve (2) comes from the dispersion relation of bound states of two free particles;
the bound states give the next-next-largest eigenvalues of the transfer matrix. We note that the
ACL for x3 < q < x4 is the same as that of the Ising model on the Union Jack (or 4-8)
lattice. Some authors derived algebraic curves for lattice models possessing six-fold rotational
symmetry; see [5, 6] and references therein. These algebraic curves are also universal.

How do symmetries of lattice models select the algebraic curves? This is the problem we
must consider. In this reply we investigate the eight-vertex model defined on the square lattice
rotated through an arbitrary angle with respect to the coordinate axes [7, 8] (figure 1(b)).
The analysis of the ACL in [4] is re-examined. We find that the asymptotic form of the
correlation function is expressed in terms of differential forms on a Riemann surface of
genus 1. Combined with the symmetry of the square lattice, this fact explains that the ACL is
represented by the use of the algebraic curve (1) or (2).

In [4] we denoted by θ the direction along which the correlation length was calculated;
tan θ = −m/l. Since the system possesses inversion symmetry, we restricted ourselves to
−π/2 < θ < π/2, l > 0,−∞ < m < ∞ without loss of generality. To find the correlation
length along the direction θ , we consider the square lattice rotated through θ . The rotated
system is investigated with the help of an inhomogeneous transfer matrix defined by

[VIH(u)]α,β =
∑

µ

k−1∏
i=0

[
i(l+|m|)+l−1∏
j=i(l+|m|)

W(µj+1, αj+1|βj+1, µj+2|u)

×
(i+1)(l+|m|)−1∏
n=i(l+|m|)+l

W(µn+1, αn+1|βn+1, µn+2|u − v ∓ λ)

]
(3)
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where α = {α1, α2, . . . , αk(l+|m|)} and β = {β1, β2, . . . , βk(l+|m|)} are the arrow spins on two
successive rows of vertical edges, and µ = {µ1, µ2, . . . , µk(l+|m|)} the arrow spins on a row
intervening between α and β; for the definition of W , see (2.1) of [4]. In the second line the
upper sign (respectively lower sign) corresponds to the case m > 0 (respectively m < 0).

It should be noted that different kinds of boundary conditions were mixed in [3]; for
example, equations (3) of [3] relate the row-to-row transfer matrix T2 and the shift operator T1

of the Potts model with periodic boundary conditions to the two shift operators Tx, Ty of the
six-vertex model with screw-shaped boundary conditions; see [9]. The mixture of boundary
conditions makes it difficult to note some important points. In this reply we impose periodic
boundary conditions in both directions: the same boundary conditions as we assumed in [4].

Using VIH(u), we construct two operators V̄ and T̄ as

V̄ = Vl
IH(v)V|m|

IH (λ) T̄ =
{

Vm
IH(v)Vl

IH(−λ) for m > 0
V−m

IH (v − 2λ)Vl
IH(−λ) for m < 0

. (4)

The operator V̄ is equivalent to a transfer matrix acting on zigzag walls in the rotated system
(figure 1(b)), and T̄ a shift operator [5–8]. The transfer matrix V̄ reduces to the row-to-row
transfer matrix in the case m = 0, and to the diagonal-to-diagonal transfer matrix in the case
m = ±l. We can find the correlation length along the direction θ from the eigenvalues of V̄.

For the eigenvalues of VIH(u) the limiting function LIH(u) is defined by (2.13) of [4]; we
take the k → ∞ limit with l and m fixed to be constants (instead of the M → ∞ limit). The
limiting function LIH(u) is doubly periodic:

LIH(u + 4iI) = LIH(u + 4λ) = LIH(u). (5)

It follows that LIH(u) satisfies the inversion relation

LIH(u + 2λ) = L−1
IH (u). (6)

Assuming some analytic properties, and using (5) and (6), we can calculate explicit forms
of LIH(u) [10]. For some largest eigenvalues LIH(u) is given by (2.14)–(2.18) of [4] with v

replaced by u; �1,�2 and � are regarded as complex numbers.
The asymptotic form of the correlation function is obtained as (3.8) or (3.16) of [4]. Note

that the rotation of the square lattice deforms the integration paths along the imaginary axis
in [4] into those determined by the condition that the eigenvalues of the shift operator T̄ are
unimodular: ∣∣Lm

IH(v)Ll
IH(−λ)

∣∣ = 1. (7)

We cannot directly relate V̄ to the row-to-row transfer matrix in [4]. After the eigenvalues are
summed up, however, results by V̄ are equivalent to those of [4]. This equivalence is derived
with the help of the analyticity of the integrands in (3.8) and (3.16) of [4]. It follows that (i)
analyticity of LIH(u) (or L(v) in [4]) is needed to ensure the equivalence between the two
methods in figure 1.

Two further properties are pointed out. Considering the cases θ = ±π/2 shows that (ii)
the inversion relation is connected with the inversion symmetry of the model. It is noted that
(1) and (2) represent elliptic curves (i.e. they are algebraic curves of genus 1) [11]; see also
section 4 of [6]. From (3.8) and (3.16) of [4] we find that (iii) the correlation function is
written in terms of differential forms on a Riemann surface of genus 1.

The meaning of (iii) can be explained as follows: it is known that the two-dimensional
lattice models are related to the two-dimensional Euclidean field theories in the critical limit
and for distances much larger than the lattice spacing. For an Euclidean field the dispersion
relation is written as p2

x + p2
y + m2 = 0 with a suitable mass term m. The two-point correlation

function is expressed in terms of a differential form on the rational curve. The differential
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form has a periodic structure describing the rotational symmetry. For lattice models two kinds
of periods appear: one is connected with two-, four- or six-fold rotational symmetry, and the
other with the fact that eigenvalues of the transfer matrix are periodic functions of crystal
momentum. The doubly periodic structure indicates the property (iii).

Using (i)–(iii), we can reproduce the results in [4]. The property (iii) shows that, choosing
a suitable Riemann surface of genus 1, we can write the correlation function as

〈α00αlm〉 − 〈α00〉〈αlm〉 ∼
∫ 2ω1

0
d � F l(�)Gm(�) (8)

where d� is a holomorphic (or analytic) differential form on the Riemann surface; F(�)

comes from the eigenvalues of the row-to-row transfer matrix and G(�) from the eigenvalues
of the shift operator; F(�) and G(�) are doubly periodic:

F(� + 2ω1) = F(� + 2ω2) = F(�) G(� + 2ω1) = G(� + 2ω2) = G(�). (9)

From (ii) we obtain the inversion relation F(� + ω2) = F−1(�). The property (i)
indicates the analytic properties of F(�). It follows that F(�) must be of the form

F(�) =
ν∏

i=1

ik1/2sn(� + αi). (10)

The eight-vertex model possesses four-fold rotational symmetry in a special limit. It follows
that G(�) = F(� + v) with a parameter v. We redefine � and v so that the condition
G(0) = 1 is satisfied.

The case ν = 2 corresponds to the square-lattice eight-vertex model. From the fact
that the correlation function is a real-valued function, it follows that the modular parameter
τ = ω2/ω1 must be pure imaginary. For parameters α1 and α2 we find two possibilities:
α1 − α2 is a pure imaginary or a real number. The former case gives (3.16) of [4] and the
algebraic curve (2). In the latter case, integrating over α1 − α2, we find (3.8) of [4] and the
algebraic curve (1).

We expect (i)–(iii) to be quite general properties satisfied by a wide class of two-
dimensional lattice models (including unsolvable ones). Choosing the case ν = 4 in (10),
and using the six-fold rotational symmetry, we can explain the analysis of the Kagomé-lattice
eight-vertex model in [5] .

The arguments from (8) to (10) indicate a close connection between symmetries of lattice
models and covering problems of Riemann surfaces [11, 12]. I hope this point will be clarified
in further publications.

Lastly, the Ising model on the cubic lattice is mentioned. For the simple-cubic nearest-
neighbour Ising model, Holzer and Wortis [13] investigated the step tension and the facet
shape by a low-temperature expansion. The calculated facet shape is not connected with the
dispersion relation in the Gaussian model on the cubic lattice. It is quite doubtful whether
the ACL of the cubic-lattice Ising model could be the same as that of the Gaussian model on
the cubic lattice.
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